Evaluation of the intuitive control system for an interactive robotic system

نویسندگان

  • Melina Brell
  • Carsten Lenze
  • Andreas Hein
چکیده

In this paper the concept and first evaluation of the control principle of the MicroAssistant is presented. The MicroAssistant is an interactive surgical robot system to support the surgeon in microsurgical interventions especially in middle ear surgery. During those interventions the surgeon is often confronted with very small and sensitive structures. This fact conflicts with the exhausting milling process which is necessary for widening the operation field. To solve this conflict the instrument is guided interactive by the MicroAssistant. In the first part this paper introduces the control principle established by the human machine cooperation with the MicroAssistant. In the second part the usability of the human-machine-interface and the control principle is evaluated. Therefore the accuracy of the freehand milling process is compared with the accuracy of the robot assisted telemanipulative milling process. The results show that the robot assisted milling is as accurate as the freehand milling because the maximum errors of 0.71 mm for the freehand milling and 0.67 mm for the robot assisted milling are nearly the same. Hence MicroAssistant could prevent slipping of during the milling process and lead to fewer complications in middle ear surgery while being as accurate as freehand interventions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing a Robust Control Scheme for Robotic Systems with an Adaptive Observer

This paper introduces a robust task-space control scheme for a robotic system with an adaptive observer. The proposed approach does not require the availability of the system states and an adaptive observer is developed to estimate the state variables. These estimated states are then used in the control scheme. First, the dynamic model of a robot is derived. Next, an observer-based robust contr...

متن کامل

An LPV Approach to Sensor Fault Diagnosis of Robotic Arm

One of the major challenges in robotic arms is to diagnosis sensor fault. To address this challenge, this paper presents an LPV approach. Initially, the dynamics of a two-link manipulator is modelled with a polytopic linear parameter varying structure and then by using a descriptor system approach and a robust design of a suitable unknown input observer by means of pole placement method along w...

متن کامل

Discrete-time repetitive optimal control: Robotic manipulators

This paper proposes a discrete-time repetitive optimal control of electrically driven robotic manipulators using an uncertainty estimator. The proposed control method can be used for performing repetitive motion, which covers many industrial applications of robotic manipulators. This kind of control law is in the class of torque-based control in which the joint torques are generated by permanen...

متن کامل

An Interactive Virtual Reality Simulation System for Robot Control and Operator Training

Robotic systems are often very complex and difficult to operate, especially as multiple robots are integrated to accomplish difficult tasks. In addition, training the operators of these complex robotic systems is time-consuming and costly. In this paper, a virtual reality based robotic control system is presented. The virtual reality system provides a means by which operators can operate, and b...

متن کامل

A New Statistical Model for Evaluation Interactive Question Answering Systems Using Regression

The development of computer systems and extensive use of information technology in the everyday life of people have just made it more and more important for them to make quick access to information that has received great importance. Increasing the volume of information makes it difficult to manage or control. Thus, some instruments need to be provided to use this information. The QA system is ...

متن کامل

An indirect adaptive neuro-fuzzy speed control of induction motors

This paper presents an indirect adaptive system based on neuro-fuzzy approximators for the speed control of induction motors. The uncertainty including parametric variations, the external load disturbance and unmodeled dynamics is estimated and compensated by designing neuro-fuzzy systems. The contribution of this paper is presenting a stability analysis for neuro-fuzzy speed control of inducti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007